Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.043
Filtrar
1.
Microb Pathog ; 190: 106636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556103

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in children and travelers in low-income regions. The virulence of ETEC is attributed to its heat-labile and heat-stable enterotoxins, as well as its colonization factors (CFs). CFs are essential for ETEC adherence to the intestinal epithelium. However, its invasive capability remains unelucidated. In this study, we demonstrated that the CS6-positive ETEC strain 4266 can invade mammalian epithelial cells. The invasive capability was reduced in the 4266 ΔCS6 mutant but reintroduction of CS6 into this mutant restored the invasiveness. Additionally, the laboratory E. coli strain Top 10, which lacks the invasive capability, was able to invade Caco-2 cells after gaining the CS6-expressing plasmid pCS6. Cytochalasin D inhibited cell invasion in both 4266 and Top10 pCS6 cells, and F-actin accumulation was observed near the bacteria on the cell membrane, indicating that CS6-positive bacteria were internalized via actin polymerization. Other cell signal transduction inhibitors, such as genistein, wortmannin, LY294002, PP1, and Ro 32-0432, inhibited the CS6-mediated invasion of Caco-2 cells. The internalized bacteria of both 4266 and Top10 pCS6 strains were able to survive for up to 48 h, and 4266 cells were able to replicate within Caco-2 cells. Immunofluorescence microscopy revealed that the internalized 4266 cells were present in bacteria-containing vacuoles, which underwent a maturation process indicated by the recruitment of the early endosomal marker EEA-1 and late endosomal marker LAMP-1 throughout the infection process. The autophagy marker LC3 was also observed near these vacuoles, indicating the initiation of LC-3-associated phagocytosis (LAP). However, intracellular bacteria continued to replicate, even after the initiation of LAP. Moreover, intracellular filamentation was observed in 4266 cells at 24 h after infection. Overall, this study shows that CS6, in addition to being a major CF, mediates cell invasion. This demonstrates that once internalized, CS6-positive ETEC is capable of surviving and replicating within host cells. This capability may be a key factor in the extended and recurrent nature of ETEC infections in humans, thus highlighting the critical role of CS6.


Assuntos
Citocalasina D , Escherichia coli Enterotoxigênica , Proteínas de Escherichia coli , Humanos , Células CACO-2 , Escherichia coli Enterotoxigênica/patogenicidade , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Citocalasina D/farmacologia , Actinas/metabolismo , Células Epiteliais/microbiologia , Aderência Bacteriana , Infecções por Escherichia coli/microbiologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/genética , Morfolinas/farmacologia , Transdução de Sinais , Androstadienos/farmacologia , Wortmanina/farmacologia , Endocitose , Cromonas/farmacologia , Plasmídeos/genética
2.
Biomolecules ; 14(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38397402

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by amyloid-beta (Aß) plaques and tau neurofibrillary tangles (NFT). Modelling aspects of AD is challenging due to its complex multifactorial etiology and pathology. The present study aims to establish a cost-effective and rapid method to model the two primary pathologies in organotypic brain slices. Coronal hippocampal brain slices (150 µm) were generated from postnatal (day 8-10) C57BL6 wild-type mice and cultured for 9 weeks. Collagen hydrogels containing either an empty load or a mixture of human Aß42 and P301S aggregated tau were applied to the slices. The media was further supplemented with various intracellular pathway modulators or heavy metals to augment the appearance of Aß plaques and tau NFTs, as assessed by immunohistochemistry. Immunoreactivity for Aß and tau was significantly increased in the ventral areas in slices with a mixture of human Aß42 and P301S aggregated tau compared to slices with empty hydrogels. Aß plaque- and tau NFT-like pathologies could be induced independently in slices. Heavy metals (aluminum, lead, cadmium) potently augmented Aß plaque-like pathology, which developed intracellularly prior to cell death. Intracellular pathway modulators (scopolamine, wortmannin, MHY1485) significantly boosted tau NFT-like pathologies. A combination of nanomolar concentrations of scopolamine, wortmannin, MHY1485, lead, and cadmium in the media strongly increased Aß plaque- and tau NFT-like immunoreactivity in ventral areas compared to the slices with non-supplemented media. The results highlight that we could harness the potential of the collagen hydrogel-based spreading of human Aß42 and P301S aggregated tau, along with pharmacological manipulation, to produce pathologies relevant to AD. The results offer a novel ex vivo organotypic slice model to investigate AD pathologies with potential applications for screening drugs or therapies in the future.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Cádmio/metabolismo , Wortmanina/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Encéfalo/metabolismo , Placa Amiloide/complicações , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Colágeno/metabolismo , Hidrogéis/metabolismo , Derivados da Escopolamina/metabolismo
3.
Biomed Pharmacother ; 170: 115942, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042111

RESUMO

Bladder cancer cells possess unique adaptive capabilities: shaped by their environment, cells face a complex chemical mixture of metabolites and xenobiotics accompanied by physiological mechanical cues. These responses might translate into resistance to chemotherapeutical regimens and can largely rely on autophagy. Considering molecules capable of rewiring tumor plasticity, compounds of natural origin promise to offer valuable options. Fungal derived metabolites, such as bafilomycin and wortmannin are widely acknowledged as autophagy inhibitors. Here, their potential to tune bladder cancer cells´ adaptability to chemical and physical stimuli was assessed. Additionally, dietary occurring mycotoxins were also investigated, namely deoxynivalenol (DON, 0.1-10 µM) and fusaric acid (FA, 0.1-1 mM). Endowing a Janus' face behavior, DON and FA are on the one side described as toxins with detrimental health effects. Concomitantly, they are also explored experimentally for selective pharmacological applications including anticancer activities. In non-cytotoxic concentrations, bafilomycin (BAFI, 1-10 nM) and wortmannin (WORT, 1 µM) modified cell morphology and reduced cancer cell migration. Application of shear stress and inhibition of mechano-gated PIEZO channels reduced cellular sensitivity to BAFI treatment (1 nM). Similarly, for FA (0.5 mM) PIEZO1 expression and inhibition largely aligned with the modulatory potential on cancer cells motility. Additionally, this study highlighted that the activity profile of compounds with similar cytotoxic potential (e.g. co-incubation DON with BAFI or FA with WORT) can diverge substantially in the regulation of cell mechanotransduction. Considering the interdependence between tumor progression and response to mechanical cues, these data promise to provide a novel viewpoint for the study of chemoresistance and associated pathways.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Mecanotransdução Celular , Wortmanina/farmacologia , Autofagia , Antineoplásicos/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Canais Iônicos
4.
MAGMA ; 37(1): 93-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38019376

RESUMO

OBJECTIVE: We established normal ranges for native T1 and T2 values in the human liver using a 1.5 T whole-body imager (General Electric) and we evaluated their variation across hepatic segments and their association with age and sex. MATERIALS AND METHODS: One-hundred healthy volunteers aged 20-70 years (50% females) underwent MRI. Modified Look-Locker inversion recovery and multi-echo fast-spin-echo sequences were used to measure hepatic native global and segmental T1 and T2 values, respectively. RESULTS: T1 and T2 values exhibited good intra- and inter-observer reproducibility (coefficient of variation < 5%). T1 value over segment 4 was significantly lower than the T1 values over segments 2 and 3 (p < 0.0001). No significant regional T2 variability was detected. Segmental and global T1 values were not associated with age or sex. Global T2 values were independent from age but were significantly lower in males than in females. The lower and upper limits of normal for global T1 values were, respectively, 442 ms and 705 ms. The normal range for global T2 values was 35 ms-54 ms in males and 39 ms-54 ms in females. DISCUSSION: Liver T1 and T2 mapping is feasible and reproducible and the provided normal ranges may help to establish diagnosis and progression of various liver diseases.


Assuntos
Fígado , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Valores de Referência , Voluntários Saudáveis , Reprodutibilidade dos Testes , Wortmanina , Valor Preditivo dos Testes , Fígado/diagnóstico por imagem
5.
Int Immunopharmacol ; 127: 111457, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38160566

RESUMO

Cisplatin is a highly effective antitumor agent, but its clinical use is limited due to critical adverse reactions including acute kidney injury (AKI). Nicorandil is an approved antianginal agent decreasing ischemia by potassium channel opening. The aim of this study was to investigate the nephroprotective effects of nicorandil and the possible role of activating PI3K/AKT/mTOR pathway in ameliorating cisplatin-induced AKI. Forty male Wistar rats were randomly allocated in 4 groups (n = 10). Group I: rats received the vehicle and served as control. Group II: rats received a single dose of cisplatin (7 mg/kg, i.p) on the 10th day of the experiment and served as AKI group. Group III: rats received cisplatin as in group II and nicorandil (3 mg/kg/day, p.o) for 14 days. Group IV: rats received cisplatin and nicorandil as in group III as well as wortmannin (15 µg/kg, i.v) for 14 days. Nicorandil exhibited obvious nephroprotective effects via the activation of PI3K/AKT/mTOR pathway. Moreover, nicorandil succeed to reduce the expression of the autophagy markers beclin-1 and LC-3II/I. In parallel, nicorandil showed anti-inflammatory and antiapoptotic effects via inhibition of NF-κB inflammatory pathway and depression of Bax/Bcl-2 ratio. Wortmannin, the PI3K inhibitor, was used to demonstrate the proposed pathway. Our study showed the nephroprotective effects of nicorandil in cisplatin-induced AKI in rats via activation of PI3K/AKT/mTOR signaling cascade, inhibition of autophagy, anti-inflammatory, anti-apoptotic, anti-oxidant activities. Thus, nicorandil could represent a promising renoprotective agent in cancer patients treated with cisplatin.


Assuntos
Injúria Renal Aguda , Cisplatino , Humanos , Ratos , Masculino , Animais , Cisplatino/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Nicorandil/farmacologia , Nicorandil/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Wortmanina/farmacologia , Ratos Wistar , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Apoptose
6.
Front Biosci (Landmark Ed) ; 28(11): 282, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062822

RESUMO

OBJECTIVE: We explore the effects of endothelial progenitor cell (EPC)-derived exosomes (EPCexos) and of astragaloside IV (ASIV)-stimulated EPCexos (ASIV-EPCexos) on type I diabetic-wound healing, and determine the basic molecular mechanisms of action. METHODS: EPCs were exposed to different concentrations of ASIV to generate ASIV-EPCexos. A chronic-wound healing model involving streptozotocin-stimulated diabetic rats was established. These rats were treated with EPCexos, ASIV-EPCexos, rapamycin, and wortmannin. Wound healing was evaluated by direct photographic observation, hematoxylin and eosin staining, and Masson's trichrome staining. RESULTS: ASIV treatment increased the abilities of EPCs (e.g., proliferation), as well as exosome secretion. EPCexo showed a "cup holder" like structure. Treatment with ASIV-EPCexos increased the wound-healing rate, collagen-deposition area, bromodeoxyuridine uptake, VEGF expression, and the number of CD31- and αSMA- positive cells, whereas decreased epidermal thickness and CD45 expression. The expression of the PI3K/AKT/mTOR pathway increased, whereas the expression of inflammatory factor decreased. However, rapamycin and wortmannin reversed these changes. CONCLUSIONS: ASIV-EPCexos may accelerate type I diabetic-wound healing via the PI3K/AKT/mTOR pathway. This study may lay the foundation for new clinical treatment options for patients with type I diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Progenitoras Endoteliais , Exossomos , Animais , Ratos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Wortmanina/metabolismo , Wortmanina/farmacologia , Cicatrização
7.
Cell Rep ; 42(12): 113583, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096057

RESUMO

Selective autophagy mediates the removal of harmful material from the cytoplasm. This cargo material is selected by cargo receptors, which orchestrate its sequestration within double-membrane autophagosomes and subsequent lysosomal degradation. The cargo receptor p62/SQSTM1 is present in cytoplasmic condensates, and a fraction of them are constantly delivered into lysosomes. However, the molecular composition of the p62 condensates is incompletely understood. To obtain insights into their composition, we develop a method to isolate these condensates and find that p62 condensates are enriched in components of the translation machinery. Furthermore, p62 interacts with translation initiation factors, and eukaryotic initiation factor 2α (eIF2α) and eIF4E are degraded by autophagy in a p62-dependent manner. Thus, p62-mediated autophagy may in part be linked to down-regulation of translation initiation. The p62 condensate isolation protocol developed here may facilitate the study of their contribution to cellular quality control and their roles in health and disease.


Assuntos
Condensados Biomoleculares , Fator de Iniciação 2 em Eucariotos , Fator de Iniciação 4E em Eucariotos , Proteínas de Ligação a RNA , Humanos , Células HEK293 , Proteínas de Ligação a RNA/metabolismo , Condensados Biomoleculares/efeitos dos fármacos , Condensados Biomoleculares/metabolismo , Fator de Iniciação 2 em Eucariotos/antagonistas & inibidores , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4E em Eucariotos/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Wortmanina/farmacologia
8.
J Plant Physiol ; 291: 154137, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984048

RESUMO

Vacuolar sorting is critically important in plants as it regulates the mobilization of proteins and plays a major role in important agricultural traits like yield and seed protein content. Vacuolar sorting receptors (VSRs) are integral membrane proteins that mediate protein trafficking from the Golgi apparatus to the vacuole via the intermediate membrane-bound prevacuolar compartment (PVC)/multivesicular body (MVB). VSR proteins, such as an 80 kD (BP-80) from pea, also serve as markers for PVC/MVB. Dissecting VSR-mediated protein trafficking pathways may provide ways to enhance agronomic traits and crop yield. Green fluorescence protein (GFP) fusions with the seven Arabidopsis (Arabidopsis thaliana) VSRs were previously shown to localize to PVCs in transgenic tobacco BY-2 cells. The Rice (Oryza sativa) genome contains seven VSRs (OsVSR1-7), but little is known about their subcellular localizations. Here we studied the subcellular localization of OsVSR1-7 b y using a reporter approach, in which GFP-OsVSR1-7 fusions containing the transmembrane domain (TMD) and cytoplasmic tail (CT) of individual OsVSR were expressed in the protoplasts of rice, transgenic tobacco BY-2 cells and transgenic rice plants. Immunofluorescent labelling studies and confocal laser scanning microscope observation demonstrated that the seven OsVSRs are localized to PVCs and form ring-like structures upon wortmannin treatment. Therefore, we have verified the subcellular localization of OsVSR1-7 in this study. The OsVSRs tagged with GFP can serve as PVCs/MVBs markers in rice for the future studies.


Assuntos
Arabidopsis , Oryza , Vacúolos/metabolismo , Oryza/genética , Oryza/metabolismo , Transporte Proteico , Wortmanina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Fluorescência Verde/metabolismo
9.
J Cell Mol Med ; 27(23): 3760-3772, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698050

RESUMO

Neonatal respiratory system disease is closely associated with embryonic lung development. Our group found that integrin ß4 (ITGB4) is downregulated in the airway epithelium of asthma patients. Asthma is the most common chronic respiratory illness in childhood. Therefore, we suspect whether the deletion of ITGB4 would affect fetal lung development. In this study, we characterized the role of ITGB4 deficiency in bronchopulmonary dysplasia (BPD). ITGB4 was conditionally knocked out in CCSP-rtTA, Tet-O-Cre and ITGB4f/f triple transgenic mice. Lung tissues at different developmental stages were collected for experimental detection and transcriptome sequencing. The effects of ITGB4 deficiency on lung branching morphogenesis were observed by fetal mouse lung explant culture. Deleting ITGB4 from the airway epithelial cells results in enlargement of alveolar airspaces, inhibition of branching, the abnormal structure of epithelium cells and the impairment of cilia growth during lung development. Scanning electron microscopy showed that the airway epithelial cilia of the ß4ccsp.cre group appear to be sparse, shortened and lodging. Lung-development-relevant factors such as SftpC and SOX2 significantly decreased both mRNA and protein levels. KEGG pathway analysis indicated that multiple ontogenesis-regulating-relevant pathways converge to FAK. Accordingly, ITGB4 deletion decreased phospho-FAK, phospho-GSK3ß and SOX2 levels, and the correspondingly contrary consequence was detected after treatment with GSK3ß agonist (wortmannin). Airway branching defect of ß4ccsp.cre mice lung explants was also partly recovered after wortmannin treatment. Airway epithelial-specific deletion of ITGB4 contributes to lung developmental defect, which could be achieved through the FAK/GSK3ß/SOX2 signal pathway.


Assuntos
Asma , Displasia Broncopulmonar , Integrina beta4 , Animais , Humanos , Recém-Nascido , Camundongos , Asma/metabolismo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Células Epiteliais/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Integrina beta4/genética , Integrina beta4/metabolismo , Pulmão/metabolismo , Camundongos Transgênicos , Wortmanina/metabolismo
10.
Biofactors ; 49(6): 1174-1188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37345860

RESUMO

Human T lymphotropic virus type 1 (HTLV-1) infection can cause adult T-cell lymphoblastic leukemia (ATLL), an incurable, chemotherapy-resistant malignancy. In a quest for new therapeutic targets, our study sought to determine the levels of AKT, mTOR, and PI3K in ATLL MT-2 cells, HTLV-1 infected NIH/3T3 cells (Inf-3T3), and HTLV-1 infected patients (Carrier, HAM/TSP, and ATLL). Furthermore, the effects of rigosertib, wortmannin, and rapamycin on the PI3K/Akt/mTOR pathway to inhibit the proliferation of ATLL cells were examined. The results showed that mRNA expression of Akt/PI3K/mTOR was down-regulated in carrier, HAM/TSP, and ATLL patients, as well as MT-2, and Inf-3T3 cells, compared to the healthy individuals and untreated MT-2 and Inf-3T3 as controls. However, western blotting revealed an increase in the phosphorylated and activated forms of AKT and mTOR. Treating the cells with rapamycin, wortmannin, and rigosertib decreased the phosphorylated forms of Akt and mTOR and restored their mRNA expression levels. Using these inhibitors also significantly boosted the expression of the pro-apoptotic genes, Bax/Bcl-2 ratio as well as the expression of the tumor suppressor gene p53 in the MT-2 and Inf-3T3cells. Rigosertib was more potent than wortmannin and rapamycin in inducing sub-G1 and G2-M cell cycle arrest, as well as late apoptosis in the Inf-3T3 and MT-2 cells. It also synergized the cytotoxic effects of vincristine. These findings demonstrate that HTLV-1 downregulation of the mRNA level may occur as a negative feedback response to increased PI3K-Akt-mTOR phosphorylation by HTLV-1. Therefore, using rigosertib alone or in combination with common chemotherapy drugs may be beneficial in ATLL patients.


Assuntos
Infecções por HTLV-I , Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Adulto , Animais , Camundongos , Humanos , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/metabolismo , Sirolimo/farmacologia , Wortmanina , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Infecções por HTLV-I/genética , Serina-Treonina Quinases TOR/genética , RNA Mensageiro
11.
Zygote ; 31(4): 380-385, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37212055

RESUMO

In this study, we built on our previous research that discovered that autophagy activated the metaphase I stage during porcine oocytes in vitro maturation. We investigated the relationship between autophagy and oocyte maturation. First, we confirmed whether autophagy was activated differently by different media (TCM199 and NCSU-23) during maturation. Then, we investigated whether oocyte maturation affected autophagic activation. In addition, we examined whether the inhibition of autophagy affected the nuclear maturation rate of porcine oocytes. As for the main experiment, we measured LC3-II levels using western blotting after inhibition of nuclear maturation via cAMP treatment in an in vitro culture to clarify whether nuclear maturation affected autophagy. After autophagy inhibition, we also counted matured oocytes by treating them with wortmannin or a E64d and pepstatin A mixture. Both groups, which had different treatment times of cAMP, showed the same levels of LC3-II, while the maturation rates were about four times higher after cAMP 22 h treatment than that of the 42 h treatment group. This indicated that neither cAMP nor nuclear status affected autophagy. Autophagy inhibition during in vitro oocyte maturation with wortmannin treatment reduced oocyte maturation rates by about half, while autophagy inhibition by the E64d and pepstatin A mixture treatment did not significantly affect the oocyte maturation. Therefore, wortmannin itself, or the autophagy induction step, but not the degradation step, is involved in the oocyte maturation of porcine oocytes. Overall, we propose that oocyte maturation does not stand upstream of autophagy activation, but autophagy may exist upstream of oocyte maturation.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Oócitos , Animais , Suínos , Wortmanina/farmacologia , Wortmanina/metabolismo , Oócitos/fisiologia , Metáfase , Autofagia
12.
PLoS One ; 18(2): e0281668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795694

RESUMO

Aponogeton madagascariensis, commonly known as the lace plant, produces leaves that form perforations by programmed cell death (PCD). Leaf development is divided into several stages beginning with "pre-perforation" furled leaves enriched with red pigmentation from anthocyanins. The leaf blade is characterized by a series of grids known as areoles bounded by veins. As leaves develop into the "window stage", anthocyanins recede from the center of the areole towards the vasculature creating a gradient of pigmentation and cell death. Cells in the middle of the areole that lack anthocyanins undergo PCD (PCD cells), while cells that retain anthocyanins (non-PCD cells) maintain homeostasis and persist in the mature leaf. Autophagy has reported roles in survival or PCD promotion across different plant cell types. However, the direct involvement of autophagy in PCD and anthocyanin levels during lace plant leaf development has not been determined. Previous RNA sequencing analysis revealed the upregulation of autophagy-related gene Atg16 transcripts in pre-perforation and window stage leaves, but how Atg16 affects PCD in lace plant leaf development is unknown. In this study, we investigated the levels of Atg16 in lace plant PCD by treating whole plants with either an autophagy promoter rapamycin or inhibitors concanamycin A (ConA) or wortmannin. Following treatments, window and mature stage leaves were harvested and analyzed using microscopy, spectrophotometry, and western blotting. Western blotting showed significantly higher Atg16 levels in rapamycin-treated window leaves, coupled with lower anthocyanin levels. Wortmannin-treated leaves had significantly lower Atg16 protein and higher anthocyanin levels compared to the control. Mature leaves from rapamycin-treated plants generated significantly fewer perforations compared to control, while wortmannin had the opposite effect. However, ConA treatment did not significantly change Atg16 levels, nor the number of perforations compared to the control, but anthocyanin levels did increase significantly in window leaves. We propose autophagy plays a dual role in promoting cell survival in NPCD cells by maintaining optimal anthocyanin levels and mediating a timely cell death in PCD cells in developing lace plant leaves. How autophagy specifically affects anthocyanin levels remained unexplained.


Assuntos
Alismatales , Antocianinas , Antocianinas/metabolismo , Wortmanina , Apoptose/fisiologia , Alismatales/fisiologia , Folhas de Planta/metabolismo , Autofagia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
World J Biol Psychiatry ; 24(2): 149-161, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35615969

RESUMO

OBJECTIVES: Hippocampal neurogenesis is closely related to learning and memory, and hippocampal neurogenesis disorders are involved in the development of many neurodegenerative diseases. Mineralocorticoid receptor (MR) plays a vital role in regulating stress response, neuroendocrine and cognitive functions, and is involved in regulating the integrity and stability of neural networks. However, the potential role of MR in the pathogenesis of postoperative cognitive dysfunction (POCD) is unclear. Therefore, this study evaluated the effect and mechanism of MR activation on postoperative hippocampal neurogenesis and cognitive function in aged mice. METHODS: 18-month-old male Kunming mice were randomly divided into Control group (C group), Surgery group (S group), Surgery+ Aldosterone group (S+Aldo group), Surgery + Wortmannin group (S+Wort group), Surgery + Aldosterone + Wortmannin group (S+Aldo+Wort group). Laparotomy was used to establish an animal model of postoperative cognitive dysfunction. After surgery, mice were intraperitoneally injected with aldosterone (100 ug/kg,150 ug/kg,200 ug/kg) and / or wortmannin (1 mg/kg); One day before the sacrifice, mice were injected intraperitoneally with BrdU (100 mg / kg / time, 3 times in total). Mice were subjected to Morris water maze and field tests at 1, 3, 7, and 14 days after surgery. Immunofluorescence was used to detect the number of BrdU +, Nestin +, BrdU/Nestin + positive cells in the hippocampal dentate gyrus of mice at 1, 3, 7 and 14 days after surgery. Western-blot was used to detect PI3K/Akt/GSK-3ß signaling pathway related proteins Akt, p-Akt, GSK-3ß, P-GSK-3ß expression. RESULTS: Stress impairs the performance of aged mice in water maze and open field tests, reduces the number of BrdU/Nestin+ cells in the hippocampal dentate gyrus, and inhibits the phosphorylation of Akt and GSK-3ß proteins in the hippocampus. Aldosterone treatment promotes P-Akt, P-GSK-3ß protein expression and hippocampal neural stem cell proliferation, and improves postoperative cognitive dysfunction. However, wortmannin treatment significantly reversed these effects of aldosterone. CONCLUSIONS: The mineralocorticoid receptor agonist aldosterone promotes the proliferation of hippocampal neural stem cells and improves cognitive dysfunction in aged mice after surgery, and the mechanism may be related to activation of PI3K/Akt/GSK-3ß signaling.


Assuntos
Células-Tronco Neurais , Complicações Cognitivas Pós-Operatórias , Camundongos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Aldosterona/metabolismo , Aldosterona/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Nestina/metabolismo , Nestina/farmacologia , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/patologia , Receptores de Mineralocorticoides/metabolismo , Mineralocorticoides/metabolismo , Mineralocorticoides/farmacologia , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Wortmanina/metabolismo , Wortmanina/farmacologia , Hipocampo , Células-Tronco Neurais/metabolismo , Neurogênese , Cognição , Proliferação de Células
14.
Autophagy ; 19(4): 1164-1183, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36026492

RESUMO

Macroautophagy/autophagy is a multistep degradative process that is essential for maintaining cellular homeostasis and is often dysregulated during disease. Systematically quantifying flux through this pathway is critical for gaining fundamental insights and effectively modulating this process. Established methods to quantify flux use steady-state measurements, which provide limited information about the perturbation and the cellular response. We present a theoretical and experimental framework to measure autophagic steps in the form of rates under non-steady-state conditions. We use this approach to measure temporal responses to rapamycin and wortmannin treatments, two commonly used autophagy modulators. We quantified changes in autophagy rates in as little as 10 min, which can establish direct mechanisms for autophagy perturbation before feedback begins. We identified concentration-dependent effects of rapamycin on the initial and temporal progression of autophagy rates. We also found variable recovery time from wortmannin's inhibition of autophagy, which is further accelerated by rapamycin. Furthermore, we applied this approach to study the effect of serum and glutamine starvation on autophagy. Serum starvation led to a rapid and transient increase in all the rates. Glutamine starvation led to a decrease in the rates on a longer timescale. In summary, this new approach enables the quantification of autophagy flux with high sensitivity and temporal resolution and facilitates a comprehensive understanding of this process.


Assuntos
Autofagia , Glutamina , Humanos , Glutamina/metabolismo , Wortmanina/farmacologia , Wortmanina/metabolismo , Lisossomos/metabolismo , Sirolimo/farmacologia
15.
Nutrients ; 14(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558517

RESUMO

Hair loss remains a significant problem that is difficult to treat; therefore, there is a need to identify safe natural materials that can help patients with hair loss. We evaluated the hair anagen activation effects of limonin, which is abundant in immature citrus fruits. Limonin increased the proliferation of rat dermal papilla cells (rDPC) by changing the levels of cyclin D1 and p27, and increasing the number of BrdU-positive cells. Limonin increased autophagy by decreasing phosphorylated mammalian target of rapamycin levels and increasing the phospho-Raptor, ATG7 and LC3B. Limonin also activated the Wnt/ß-catenin pathway by increasing phospho-ß-catenin levels. XAV939, a Wnt/ß-catenin inhibitor, inhibited these limonin-induced changes, including induced autophagy, BrdU-positive cells, and cell proliferation. Limonin increased the phosphorylated AKT levels in both two-dimensional cultured rDPC and three-dimensional spheroids. Treatment with the PI3K inhibitor wortmannin inhibited limonin-induced proliferation, and disrupted other limonin-mediated changes, including decreased p27, increased BrdU-positive cells, induced autophagy, and increased ATG7 and LC3B levels. Wortmannin also inhibited limonin-induced cyclin D1 and LC3 expression in spheroids. Collectively, these results indicate that limonin can enhance anagen signaling by activating autophagy via targeting the Wnt/ß-catenin and/or PI3K/AKT pathways in rDPC, highlighting a candidate nutrient for hair loss treatment.


Assuntos
Folículo Piloso , Limoninas , Animais , Ratos , Alopecia , beta Catenina/metabolismo , Bromodesoxiuridina/metabolismo , Proliferação de Células , Células Cultivadas , Ciclina D1/metabolismo , Frutas/metabolismo , Limoninas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Via de Sinalização Wnt , Wortmanina/metabolismo , Wortmanina/farmacologia
16.
Physiol Rep ; 10(21): e15508, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36377055

RESUMO

Angiotensin II (Ang II)-dependent stimulation of the AT1 receptor in proximal tubules increases sodium reabsorption and blood pressure. Reabsorption is driven by the Na,K-pump that is acutely stimulated by Ang II, which requires phosphorylation of serine-938 (S938). This site is present in humans and only known to phosphorylated by PKA. Yet, activation of AT1 decreases cAMP required to activate PKA and inhibiting PKA does not block Ang II-dependent phosphorylation of S938. We tested the hypothesis that Ang II-dependent activation is mediated via increased phosphorylation at S938 through a PI3K/AKT-dependent pathway. Experiments were conducted using opossum kidney cells, a proximal tubule cell line, stably co-expressing the AT1 receptor and either the wild-type (α-1.wild-type) or an alanine substituted (α-1.S938A) form of rat kidney Na,K-pump. A 5-min exposure to 10 pM Ang II significantly activated Na,K-pump activity (56%) measured as short-circuit current across polarized α-1.wild-type cells. Wortmannin, at a concentration that selectively inhibits PI3K, blocked that Ang II-dependent activation. Ang II did not stimulate Na,K-pump activity in α-1.S938A cells. Ang II at 10 and 100 pM increased phosphorylation at S938 in α-1.wild-type cells measured in whole cell lysates. The increase was inhibited by wortmannin plus H-89, an inhibitor of PKA, not by either alone. Ang II activated AKT inhibited by wortmannin, not H-89. These data support our hypothesis and show that Ang II-dependent phosphorylation at S938 stimulates Na,K-pump activity and transcellular sodium transport.


Assuntos
Angiotensina II , Fosfatidilinositol 3-Quinases , Ratos , Animais , Humanos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Fosforilação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Wortmanina/farmacologia , Wortmanina/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Túbulos Renais Proximais/metabolismo , Sódio/metabolismo , Gambás/metabolismo
17.
Cell Mol Life Sci ; 79(11): 566, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36283999

RESUMO

Astrocytes, an abundant type of glial cells, are the key cells providing homeostasis in the central nervous system. Due to their susceptibility to infection, combined with high resilience to virus-induced cell death, astrocytes are now considered one of the principal types of cells, responsible for virus retention and dissemination within the brain. Autophagy plays an important role in elimination of intracellular components and in maintaining cellular homeostasis and is also intertwined with the life cycle of viruses. The physiological significance of autophagy in astrocytes, in connection with the life cycle and transmission of viruses, remains poorly investigated. In the present study, we investigated flavivirus-induced modulation of autophagy in human astrocytes by monitoring a tandem fluorescent-tagged LC3 probe (mRFP-EGFP-LC3) with confocal and super-resolution fluorescence microscopy. Astrocytes were infected with tick-borne encephalitis virus (TBEV) or West Nile virus (WNV), both pathogenic flaviviruses, and with mosquito-only flavivirus (MOF), which is considered non-pathogenic. The results revealed that human astrocytes are susceptible to infection with TBEV, WNV and to a much lower extent also to MOF. Infection and replication rates of TBEV and WNV are paralleled by increased rate of autophagy, whereas autophagosome maturation and the size of autophagic compartments are not affected. Modulation of autophagy by rapamycin and wortmannin does not influence TBEV and WNV replication rate, whereas bafilomycin A1 attenuates their replication and infectivity. In human astrocytes infected with MOF, the low infectivity and the lack of efficient replication of this flavivirus are mirrored by the absence of an autophagic response.


Assuntos
Astrócitos , Vírus da Encefalite Transmitidos por Carrapatos , Animais , Humanos , Astrócitos/metabolismo , Wortmanina/metabolismo , Autofagia , Sirolimo , Replicação Viral
18.
Int J Mol Sci ; 23(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36233113

RESUMO

The receptor tyrosine kinase inhibitor imatinib improves patient cancer survival but is linked to cardiotoxicity. This study investigated imatinib's effects on cell viability, apoptosis, autophagy, and necroptosis in human cardiac progenitor cells in vitro. Imatinib reduced cell viability (75.9 ± 2.7% vs. 100.0 ± 0.0%) at concentrations comparable to peak plasma levels (10 µM). Imatinib reduced cells' TMRM fluorescence (74.6 ± 6.5% vs. 100.0 ± 0.0%), consistent with mitochondrial depolarisation. Imatinib increased lysosome and autophagosome content as indicated by LAMP2 expression (2.4 ± 0.3-fold) and acridine orange fluorescence (46.0 ± 5.4% vs. 9.0 ± 3.0), respectively. Although imatinib increased expression of autophagy-associated proteins and also impaired autophagic flux, shown by proximity ligation assay staining for LAMP2 and LC3II (autophagosome marker): 48 h of imatinib treatment reduced visible puncta to 2.7 ± 0.7/cell from 11.3 ± 2.1 puncta/cell in the control. Cell viability was partially recovered by autophagosome inhibition by wortmannin, with the viability increasing 91.8 ± 8.2% after imatinib-wortmannin co-treatment (84 ± 1.5% after imatinib). Imatinib-induced necroptosis was associated with an 8.5 ± 2.5-fold increase in mixed lineage kinase domain-like pseudokinase activation. Imatinib-induced toxicity was rescued by RIP1 inhibition: 88.6 ± 3.0% vs. 100.0 ± 0.0% in the control. Imatinib applied to human cardiac progenitor cells depolarises mitochondria and induces cell death through necroptosis, recoverable by RIP1 inhibition, with a partial role for autophagy.


Assuntos
Laranja de Acridina , Autofagia , Apoptose , Morte Celular , Humanos , Mesilato de Imatinib/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Células-Tronco , Wortmanina
19.
Aging (Albany NY) ; 14(18): 7568-7586, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36170028

RESUMO

Decreased BDNF and impaired TRKB signaling contribute to neurodegeneration in Alzheimer's disease (AD). We have shown previously that coumarin derivative LM-031 enhanced CREB/BDNF/BCL2 pathway. In this study we explored if LM-031 analogs LMDS-1 to -4 may act as TRKB agonists to protect SH-SY5Y cells against Aß toxicity. By docking computation for binding with TRKB using 7,8-DHF as a control, all four LMDS compounds displayed potential of binding to domain d5 of TRKB. In addition, all four LMDS compounds exhibited anti-aggregation and neuroprotective efficacy on SH-SY5Y cells with induced Aß-GFP expression. Knock-down of TRKB significantly attenuated TRKB downstream signaling and the neurite outgrowth-promoting effects of these LMDS compounds. Among them, LMDS-1 and -2 were further examined for TRKB signaling. Treatment of ERK inhibitor U0126 or PI3K inhibitor wortmannin decreased p-CREB, BDNF and BCL2 in Aß-GFP cells, implicating the neuroprotective effects are via activating TRKB downstream ERK, PI3K-AKT and CREB signaling. LMDS-1 and -2 are blood-brain barrier permeable as shown by parallel artificial membrane permeability assay. Our results demonstrate how LMDS-1 and -2 are likely to work as TRKB agonists to exert neuroprotection in Aß cells, which may shed light on the potential application in therapeutics of AD.


Assuntos
Doença de Alzheimer , Glicoproteínas de Membrana/agonistas , Neuroblastoma , Fármacos Neuroprotetores , Receptor trkB/agonistas , Peptídeos beta-Amiloides/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cumarínicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Membranas Artificiais , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Wortmanina
20.
Neurotox Res ; 40(5): 1516-1525, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36066748

RESUMO

Aluminum neurotoxicity impairs learning and memory ability, but the molecular mechanism has not been elucidated. The aim of this study was to examine the role of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling in regulating the expression of synaptic plasticity-related proteins (PRPs) and p-tau deposition to explore the mechanism underlying aluminum-induced neurotoxicity. We constructed a sub-chronic aluminum-exposed Sprague Dawley (SD) rat model to assess aluminum neurotoxicity in vivo. The learning and memory abilities of rats were examined using the Morris water maze test. We also assessed the effect of aluminum in vitro using rat pheochromocytoma (PC12) cells. To explore the role of PI3K/Akt/mTOR signaling in aluminum neurotoxicity, we used the PI3K inhibitor wortmannin and the mTOR inhibitor rapamycin in aluminum-treated PC12 cells. Protein expression was examined by western blotting. Aluminum disrupted the learning and memory abilities of SD rats. Mechanistically, aluminum reduced the levels of the synaptic PRPs (cAMP-response element binding protein (CREB), glutamate receptor 1 (GluR1), glutamate receptor 2 (GluR2), and postsynaptic density protein 95 (PSD-95), and it increased p-tau deposition in the hippocampus of SD rats. We observed similar results in aluminum-treated PC12 cells. Further, PI3K/Akt/mTOR signaling was abnormally activated in aluminum-treated PC12 cells, and treatment with rapamycin reversed the decrease in synaptic PRPs levels and the increase in p-tau deposition. In conclusion, the activation of PI3K/Akt/mTOR signaling reduces the levels of synaptic PRPs and increases p-tau deposition induced by aluminum. Therefore, the PI3K/Akt/mTOR pathway participates in the mechanism of aluminum neurotoxicity.


Assuntos
Síndromes Neurotóxicas , Fosfatidilinositol 3-Quinases , Alumínio/toxicidade , Animais , Proteína 4 Homóloga a Disks-Large , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...